Broad electrical tuning of plasmonic nanoantennas at visible frequencies
نویسندگان
چکیده
We report an experimental demonstration of electrical tuning of plasmon resonances of optical nanopatch antennas over a wide wavelength range. The antennas consist of silver nanocubes separated from a gold film by a thin 8 nm polyelectrolyte spacer layer. By using ionic liquid and indium tin oxide coated glass as a top electrode, we demonstrate dynamic and reversible tuning of the plasmon resonance over 100 nm in the visible wavelength range using low applied voltages between 3.0 V and 2.8 V. The electrical potential is applied across the nanoscale gap causing changes in the gap thickness and dielectric environment which, in turn, modifies the plasmon resonance. The observed tuning range is greater than the full-width-at-half-maximum of the plasmon resonance, resulting in a tuning figure of merit of 1.05 and a tuning contrast greater than 50%. Our results provide an avenue to create active and reconfigurable integrated nanophotonic components for applications in optoelectronics and sensing. VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4948588]
منابع مشابه
Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas.
Here we explore the radiation features of optical nanoantennas, analyzing the concepts of optical input impedance, optical radiation resistance, impedance matching, and loading of plasmonic nanodipoles. We discuss how the concept of antenna impedance may be applied to optical frequencies and how its quantity may be properly defined and evaluated. We exploit these concepts in the optimization of...
متن کاملSimultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas.
We present a novel, capped bowtie nanoantenna capable of achieving simultaneous enhancement of electric and magnetic fields in a broad spectrum spanning visible to near-infrared frequencies. By controlling parameters including nanoantenna array spacing, cap thickness, and bowtie gap spacing, we show magnetic enhancements in excess of 3000 times the incident field, which are among the highest va...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملHybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics.
In the past ten years, advances in (planar) nanofabrication schemes have opened up the path for photonic nanostructures that offer unique light-manipulation functionalities. On one hand, the opportunity of using metamaterials to realize novel effects like a magnetic response at optical frequencies, a negative refractive index, and sub-wavelength imaging have led to the development of novel nano...
متن کاملMetamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths
In this paper, a novel array of quasi-three-dimensional (quasi-3D) bowtie nanoantennas has been investigated numerically and experimentally. A low-cost and facile method has been designed and implemented to fabricate the quasi-3D bowtie nanoantennas. The fabrication processes containing laser patterning and wet etching have demonstrated the advantages of easily tuning the periodic and diameter ...
متن کامل